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Optimal-Suboptimal Synthesis and Design
of Flotation Circuits

S. P. MEHROTRA and P. C. KAPUR

DEPARTMENT OF METALLURGICAL ENGINEERING
INDJAN INSTITUTE OF TECHNOLOGY
KANPUR-208016, INDIA

Abstract

The integrated approach of process synthesis and design has been applied to
determine the optimal-suboptimal configuration and design parameters of a
flotation circuit for separation of mineral species. Mean residence time of parti-
culate species in each cell is the design parameter to be optimized, which
along with the optimal structure is extracted simultaneously from a generalized
circuit by direct search. The validity of the method has been demonstrated by
comparing results obtained by using this method with real optimal structure
and parameter values obtained by optimizing all feasible structures, enu-
merated one at a time, for the case of a two cell circuit using two different
objective functions of recovery, grade, and profit. The method is then extended
to more realistic four cell circuit and feed comprising valuable mineral,
gangue, and middlings.

INTRODUCTION

Froth flotation of suspended particulate solids by means of air bubbles
is one of the most important methods available at present for separation
of valuable mineral ores from associated gangue impurities. In a single
compartment continuous flotation cell there is one feed stream of raw
ground ore slurry and two exit streams, comprised of mineral-rich floated
concentrate and gangue-rich tailings. The aim of the flotation process
is to achieve maximum recovery (ratio of solid flow rates in concentrate
to that in feed) and highest grade (fraction of valuable mineral in the
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concentrate). Due to many reasons the separation is seldom complete,
and in order to improve the process efficiency it is a normal practice to
employ a number of interconnected flotation cells or banks of flotation
cells. Feed is introduced in the rougher cell where a crude separation is
effected. For improvement of its grade, the concentrate is then refloated
in one or more cleaner and recleaner cells. The tailings from the rougher
stage is refloated in a scavenger cell in order to extract, as far as possible,
the residual mineral from the gangue before it leaves the circuit.

A typical flotation circuit may process many thousands of tons of ore
per annum. Even a marginal improvement in its process efficiency can
have a significant economic impact. More so, as mineral-rich ores are
being rapidly depleted and it has become necessary to treat progressively
lower quality ore, with attendant increase in the processing cost. In this
preliminary report, we have investigated the feasibility of synthesizing
and designing optimal and suboptimal multicell flotation circuits using a
number of appropriate objective functions of grade, recovery, and profit.

STATEMENT OF THE PROBLEM

For illustration purpose, consider two interconnected cells. Figure 1
shows six possible intuitively meaningful configurations in which, for the
time being, split streams are excluded. In the trial and error approach the
problem is broken into two steps. First, all possible configurations are
enumerated; second, the best design parameters are determined for each
structure and the optimum configuration is selected by comparing the
objective functions. In general, a flotation circuit is comprised of many
cells, performing rougher, cleaner, and scavenger functions, and it is quite
tedious to enumerate all meaningful structures. Moreover, there is no a
priori justification for ignoring split streams, and the enumeration problem
thus becomes even more complex. Umeda, Ichikawa, and Hirai (/) have
demonstrated an integral approach to the problem in which the enumera-
tions are totally circumvented and the optimal structure and design
parameters are extracted simultaneously from a generalized circuit by
direct search. We have used this method to solve the linkage (including
split streams) problem and to determine the optimal residence time
distribution of particles in each cell. The residence time distribution, as
a design parameter, is a natural engineering choice since, as pointed out
by Woodburn et al. (2), only the holding time is at present capable of being
included into a quantitative description of the flotation kinetics. These
authors have determined optimal mean residence times in perfectly
mixed cells for a given circuit configuration.
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Fic. 1. Six possible configurations for a circuit with two flotation cells.

FLOTATION KINETIC MODEL

Considerable experimental and theoretical work in literature points to
a first-order rate of flotation of particulate solids with a distributed flotation
rate constant (3-8). It is also known that the cell, for all practical pur-
poses, behaves like a perfect mixer (2, 5,6, 9-11), but the mean residence
time is a function of particle size and density. Thus if M(K) is mass flow
rate of particles of flotation rate constant K to the cell and A is the mean
residence time, the mass flow rates in concentrate and tailings streams at
steady state are (12)

A
c®) = k| 1 1)

and

1
T(K) = MF(K)[m] (2)
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Using these relationships we can construct a steady state mathematical
model for n-particulate species of the same size and density in an m-cell flota-
tion circuit. Let the specific flotation rate constant of the jth species be K;
and let w; be its fractional valuable mineral content, and 4; be the mean
residence time in ith cell. In the generalized configuration, the feed is
split into m streams and fed to each cell. Similarly, each concentrate and
tailings stream is split into (m + 1) streams and connected as feed to
to every other cell as well as short circuited back to the cell from which
it originated. The (m + 1)-th split stream leaves the circuit as concentrate
or tailings output. The generalized configuration for two cells is shown in
Fig. 2. Consider now the ith cell. The total feed flow rate of jth species
to this cell is

F;;= Mg ;o5 + kZITj,kéki +kZIC‘,kﬁki 3)

where M. ; is the flow rate of the jth component in new feed; &, is the frac-
tion of this feed going to the ith cell, T, is the tailings flow rate of the
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Fi1G. 2. Generalized configuration for two flotation cells.
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jth species from the kth cell, §,; is the split fraction of this flow going to
the ith cell. C; is the concentrate flow rate of the jth species originating
from the kth cell, and B,; is the split fraction of concentrate flow from
the kth to the ith cell. Let

1

oy = T+ K% )

The flow rates of the jth species from the ith cell in concentrate and
tailings streams are

Cii=F;, 1 - “ji] )
and
T;: = Fjie (6)
Hence
1 —a;
C,,=T,; ,[_J] 7
i = T ™
Substitution in Eq. (3) gives
m l - O!jk
F; ;= Mg ;dp; + YT cx Bui + Oy ®)
k=1 ik
Substitution in Eq. (6) gives
m l—ajk j=1,2,...,n
Tji= Mg idpti + o‘jik;ITj,k{[ L ]ﬁki + 51::}, i=1,2,....m
)

These (n + m) linear algebraic equations can be solved for T} ; in terms
of linkage and design parameters. The formal solution is

Tii= ¢;: (Mg, 8, B, ) (10)
Similarly from Eq. (7)

Cj.= ¢j,i[l — a"’} (11)

aj,'

Let 8,, and B;, be the fractions of tailings and concentrate from the ith
cell, respectively, leaving the circuit, then the overall percentage recovery is

m Y Ci b
Mc= ;1;;1 Jsi 10x1
Zi=1MF.J'

00 (12)
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The grade is

?’:12?:1 Cj,iﬁiowj
7y 25=1Ciibo

G = x 100 (13)

CONSTRAINTS

The problem is now reduced to finding the best possible values of 9,
B, « such that an objective function of M, and/or G is optimized, given
M ; K;(j=1,2,...,n), and the number of cells m, and subject to the
following constraints. From considerations of mass balance

Y 6p; =1 (14)
i=1

L0+ O =1 (15)

=1
._lﬁki + o =1 (16)
0@ pH=i (17)

Moreover

0<a; <1 (18)

Additional constraints must be incorporated if the optimal circuit is to
be realizable from an engineering point of view, and physically meaningful.
Thus it is known that for reasons of overloading of bubbles and loss of
flotation selectivity, the pulp density d, (percent mass of solid in slurry)
should not exceed a prescribed value d, in any cell. By definition of the
mean residence time, the hold-up of solids in the /th cell is

i=1

Therefore, the lower bound on volume of the jth cell is

100 — 7
V= H{i +—0—_—5ﬂ

d d (20)

n

where d is solid density. Moreover, the overall size of the plant is also
restricted to some reasonable volume V of all cells combined, hence

V = i'f:lei Q1)
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For convenience in computation, personal judgment is used to impose
a quite liberal upper constraint 1 on 4, i.e.,

0<i<) i=1,2...,m (22)

To be acceptable, it is necessary that the grade of the concentrate does
not drop below a minimum level G, which gives rise to

G=G (23)

An obvious objective is to maximize recovery given in Eq. (12), subject
to the above constraints. In view of the fact that as K; > K,, ..., > K, in
general, w, > w,, ..., > w,, we may infer from the physical nature of the
problem that the optimum lies on the boundary of constraint G = G.
This, however, may not necessarily be true for more complicated objective
functions as illustrated subsequently.

COMPUTATIONAL ASPECTS

The integral approach used here requires search through a rather large
parameter space. This gives rise to well-known difficulties in the matter of
the slow rate of convergence and false optimum. An allied problem is
of deciding whether a split stream is, in fact, missing or not when link-
age parameters 0 and f} are very near 1 or zero. On the other hand, realiza-
tion of a large number of suboptima is not necessarily a disadvantage,
since some configurations may turn out to be simpler to design and op-
erate than the global optimum structure with only a marginal loss in
performance.

The set of algebraic equations defined by Eq. (9) was solved by the Gauss
Jordon technique (/3). A systematic evaluation of the ““best”” optimization
algorithm was beyond the scope of this investigation. However, modified
complex (/4, 15) and random search (/6-18) methods were employed.
Success with the first algorithm, used by Umeda et al. (1) also, was found
to be highly sensitive to the initial guess; the latter method, although
slow, was quite reliable. In every case a number of different initial guesses
were tried in order to assure, as far as possible, a true optimum. The
optimization was carried out in two or more stages. In the course of com-
putation it was observed that eventually the improvement in the objective
function became rather slow. The search was stopped and the linkage
ratios which were less than or greater than the prespecified values were
taken as zero and 1, respectively. Starting with the reduced generalized
configuration, the search was renewed in the smaller parameter space.
This stagewise search procedure was continued as long as the successive
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reduced configuration resulted in an improvement in the objective func-
tion. As pointed out by Hendry, Rudd, and Seader (/9), this strategy may
not lead to the global optimum although for the two cell case, treated
in the sequel, the convergence has been verified by independent means.

TWO SPECIES, TWO CELL PROBLEM

For demonstration, consider first the case n = m = 2. This will permit
evaluation of the efficacy of the integral method by comparison with the
enumerated structures, in Fig. 1, optimized individually with respect to
the mean residence times in cells I and 1I. Table 1 lists the numeric values
of feed characteristics and the constraints on process design variables
employed for this exercise. Objective functions identified by 4 and B
were simply maximize recovery subject to constraint that grade does not
fall below 35 and 759, respectively. In addition a profit function C, given
below, was also maximized.

C=Pr+ (G~ Gp)Pg (24)

where Py is the price of feed ore of grade Grand P is the increase in price
of the concentrate for every 19/ improvement in grade.

Results are presented in Tables 2A, 2B, and 2C where initial guess,
optimal configuration at first stage, and the final optimal structure syn-
thesized from the reduced configuration are shown. The reduction was
carried out by equating large and small linkage parameters (>0.8 and
<0.2, respectively) with 1 and zero, respectively. As expected, in the first
two cases optimum occurs at the grade constraint boundary, but depending
on the grade stipulation, the structures of the optimal circuits are quite
different. For objectives 4 and B the resulting configurations are

TABLE 1
Numeric Values Used in Computation of Design Parameters in Two Cell Circuit
Problem
Feed composition, Constraints on process Values of the
% variables parameters
Valuable = 22 V <20 cu ft K, = 1/min
Gangue = 78 d, = 20% Keang = 0.1/min
0<1,4, <20 My = 25 1b/min

Pr = 10.0 units
Pg = 1.00 units
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TABLE 2A

Values of Designed Parameters for Stagewise Optimization for Two Cell, Two Species
Problem for Objective 4

Parameters Initial value Stage I Stage II Optimal values
d10 0.525 0. 764 1.00 1.00
81,1 0. 150 0. 067 0.00 0. 00
S:2 0.325 0. 169 0. 00 0.00
da0 0.717 0.00 0.00 0.00
621 0.101 0. 494 1.00 1.00
022 0.182 0. 506 0.00 0.00
Bio 0. 346 0.184 0.00 0.00
Bis 0.185 0.122 0.00 0.00
Bi2 0. 469 0. 694 1.00 1.00
B20 0. 661 0. 900 1.00 1.00
B2y 0.152 0.00 0.00 0.00
B2z 0.187 0. 100 0.00 0.00
Ory 0.254 0.00 0.00 0.00
Ors Q. 746 1.00 1.00 1.00
N 6. 841 9.100 18. 545 18. 700
Az 5.238 2.015 3.945 3.730
V, — 8.08 11.90 12.51
Vs — 6. 59 7.48 7.48
Recovery — 61.49 61.99 62.01
Grade _ 35.00 35.00 35.00

TABLE 2B

Values of Designed Parameters for Stagewise Optimization for Two Cell, Two Species
Problem for Objective B

Parameter Initial value Stage I Stage II Optimal values
d1o0 0.352 0.00 0.00 0.00
811 0.320 0.522 0.00 0.00

12 0.328 0.478 1.00 1.00
20 0. 840 0.973 1.00 1.00
Jay 0.088 0.012 0.00 0.00
di2 0.072 0.015 0. 00 0.00
Bio 0. 643 0.783 1.00 1.00
11 0.144 0. 141 0.00 0.00
12 0.213 0.076 0.00 0.00
B0 0.025 0. 002 0.00 0.00
21 0.485 0.619 1.00 1.00
22 0.490 0.379 0.00 0.00
F1 0.078 0.00 0.00 0.00
F2 0.912 1.00 1.00 1.00
1 1.093 0. 996 0. 658 0. 658
2 2.527 8.650 14.032 14.032
vV, — 1.612 1. 420 1.420
V, — 12.170 18. 580 18. 580
Recovery — 22.350 24.867 24.867
Grade — 35.00 35.00 35.00
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TABLE 2C

Values of Designed Parameters for Stagewise Optimization for Two Cell, Two Species
Problem for Objective C

Parameters Initial value Stage I Stage 11 Optimal values
d10 0.518 0. 908 1.00 1.00
O11 0.377 0.088 0.00 0.00
12 0. 105 0. 004 0. 00 0.00
820 0.285 0. 006 0.00 0.00
2%} 0.237 0. 443 1.00 1.00
92, 0.478 0.551 0. 00 0.00
Bio 0. 651 0.001 0.00 0.00
Bi1 0.236 0.325 0.00 0.00
Bi2z 0.113 0.674 1.00 1.00
Bao 0.670 0. 830 1.00 1.00
B2y 0.049 0. 002 0.00 0.00
Bz 0.281 0.118 0.00 0.00

Fi 0. 246 0.271 0.00 0.00
Or2 0.754 0.729 1.00 1.00
A 8.948 13. 460 14. 816 14. 806
Az 4.353 0.715 0.822 0.822
vV, — 16. 65 17.31 17.31
vV, —_ 3.33 2. 69 2.69
Recovery —_ 34.69 33.630 33.645
Grade — 57.60 60. 70 60. 70
Price — 395.70 409.76 409.78

equivalent to configuration No. VI and V in Fig. 1 (cell number 1 in
computed configuration refers to cell number 2 in Fig. 1 and vice-versa).
The last column under each of the three objectives presents results of the
trial and error approach obtained by optimizing individually the six con-
figurations in Fig. 1 with respect to residence times only. The agreement
provides a partial check that it is possible, at least in this case, to derive
an optimal circuit starting from the generalized configuration in Fig. 2.

The two optimal circuits are intuitively reasonable. Thus when recovery
is to be increased at some sacrifice of the grade, as in objective A, it
is obvious that one of the cells must act as a scavenger [cell II in Fig. 1
(VD)]. On the other hand, in objective B high grade restriction makes it
necessary that the rougher concentrate be refloated in cleaner cell [cell
11, in Fig. 1 (V)).

THREE SPECIES, FOUR CELL PROBLEM
From the industrial flotation point of view, this is a more meaningful

problem. The third particulate species is middlings in which the valuable
mineral is locked in a gangue matrix. Table 3 gives the numeric values
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TABLE 3
Numeric Values Used in Computation of Design Parameters in Four Cell, Three Species
Problem
Feed composition, Values of the
% Constraints parameters
Valuable = 15 G =35 Koy = 1/min
Middling = 20 0<4;€20,j=1,2,...,4 Kpa=0.1/min
Gangue = 65 d, =20 Kaang = 0.01/min
V =80 cu ft My = 25 Ib/min

used for maximizing the recovery subject to a minimum of 359 grade.
As shown in Fig. 3, the generalized structure has a rather large number
of parameters, and attainment of convergence in a reasonable time is
doubtful. Therefore, optimization was carried out in four stages. At the
end of a stage, all split stream ratios <0.05 were set equal to zero and
those >0.95 were equated with 1. Each stage resulted in improvement
of the recovery. The optimal structure is shown in Fig. 4; the linkages
parmeters are given in parantheses. Table 4 gives the stagewise progress
of the linkage and design parameters and the objective function.

It will be noted in Fig. 4 that in the optimal configuration, there is one
split stream of value 0.17 only. In order to simplify the structure, it was
decided to remove this stream and seek new parameters for best recovery.
Results of this stage 5 computation, in column 7 of Table 4, show that
the recovery has now fallen somewhat. Further reduction was carried out
in stage 6 by eliminating cell No.IV altogether from the circuit, since its
computed volume was comparatively small as compared to other cells.
It will be seen from column 8 of Table 4 that the recovery has further
decreased somewhat but the final circuit is now considerably simpler.
The last two structures are shown in Fig. 5, with stage 5 structure in broken
and stage 6 in solid lines. This example illustrates that, given the necessary
data, it should be possible to incorporate capital investment and opera-
tional cost also in a more comprehensive profit function for an objective
decision on choice of the most efficient circuit.

DISCUSSION
The main advantage of the integral approach over other methods

(20-22) lies in the fact that it will give a split stream directly, if one
exists as shown in Table 4, whereas in other approaches there is no
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TABLE 4

Values of Designed Parameters for Stagewise Optimization for Four Cell, Three Species
Problem

179

Parameter Initial value Stage I

Stage II Stage III Stage IV Stage V Stage VI

10
611
612
13
O1a
d20
O21
022
O23
024
30
031
‘532
33
934
dao
641
Jaz
a3
644
Bro
ﬁll
ﬁlz
Bis
Bis
ﬁ20
B2
%)
ﬂ23
524
Bao
Bs
Baz
Baa
Bas
Bao
ﬁ4l
ﬁ42
Bas
ﬁ44
6}‘1

0.484
0.046
0.180
0.166
0.124
541
250
130
036
043
285
183
207
099
226
507
220
033
219
021
371
156
244
061
168
414
210
245
084
047
551
021
205
406
177
323
150
0. 058
0.249
0.220
0. 080

COLOLPLROOTOPPOLCOOOOLLLOOLRLLRLLOOLRLP

0.031
0.068
0.389
0.403
0.109
0. 049
0.251
0. 367
0.165
0. 168
0.019
0.00

0. 800
0.143
0.038
0.403
0.045
0.072
0. 407
0.073
0.736
0.003
0.018
0.239
0.004
0.990
0. 007
0.00

0.00

0. 003
0. 582
0.077
0. 194
0.014
0.133
0.105
0.359
0.227
0.308
0.001
0.279

0. 002
0.031
0.352
0.615
0.00

0.016
0.014
0.238
0.423
0. 309
0.020
0.00
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TABLE 4 (continued)

MEHROTRA AND KAPUR

Parameter Initial value StageI StageIl Stagelll StageIV StageV Stage VI
k2 0.004 0.550 0.362 0.423 0.00 0.00 0.00
Or3 0.045 0.170 0.00 0.00 0.00 0.00 0.00
Ora 0.871 0. 001 0. 001 0.00 0.00 0.00 —

Ay 4.580 13.015 11.707 14.88 18.09 19. 89 20.0
Az 4.390 15.028 14.206 19.98 19. 42 18.81 18.29
As 0.196 5.077 7.107  15.19 19.02 16. 54 16. 88
A 1.61 4.332 14.803 14.88 8.41 5.93 —
V, — 20.42 10.23 10. 67 20.18 21. 60 21.69
V, — 45.73 42.96 47.95 31.14 31.84 31.42
Vs — 9.78 14.99 8.85 16.43 14.31 14. 54
Va — 3.41 11. 80 7.77 4.28 3.02 —
Recovery 12.80 69.08 70.27 70.72 71.18 71.08 70.93
Grade 79. 40 35.00 35.01 35.00 35.00 35.00 35.00
FEED
(\ ol
(017) (0.83)
Cq i Co C3 Cy
m (n (1
- 1 2 3 4
A
T { [ LTZ T3 (l)l Ts,
I L Joue
(0.654) ~

FEED

1

—_

FiG. 4. Optimal configuration for three species, four cell problem.

F1G. 5. Suboptimal configuration for three species, four cell problem.
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way of obtaining split streams even if they are necessary for the optimal
structure. The integral method and the trial and error approach lead to
identical configurations with almost equal design parameters for objec-
tives 4, B and C.

It should be stressed that the examples chosen in this investigation were
deliberately kept simple in order to focus attention on the nature of the
problem and its possible solution. In theory at least, there is no reason
why more general processes cannot be synthesized. A battery of flotation
cells, commonly used in industry, can be modeled as x number of perfect
mixtures in series, and for equal residence time Eq. (1) becomes

1 x
T(K) = Mg(K) [’177&] (25)

Distributed size feed can also be handled if it is assumed, as a crude
approximation, that for sufficiently dilute suspensions, the sojourn time
of solids is a function of particle size but is independent of particulate
environment. Equation (2) for particles of size r can then be written as

T(K,) = MK, [ﬂ——K—J (26)

Now the design parameters to be optimized are the constants g, b, . . ., in
an empirical expression relating A to size r

A =AMr,a,b,...) 27

Experimental data of Woodbrun et al. (9) shows that the following
relationship is perhaps sufficient for this purpose:

Jy=a+ br + cr? (28)

The main drawback in the integral approach, as indicated earlier, is
in the optimization step which becomes even more acute as the parameter
space increases. Recently, the authors have come across a more efficient
hyperconical random search method (23) which may prove to be more
suitable for this kind of problem.

In conclusion, the optimal synthesis of the flotation circuit and its
design variables are highly sensitive to the nature of feed material, num-
ber of cells, and the objective to be maximized. The integral approach
provides a formal systematic technique for making decisions for this
purpose. It will be appreciated that the synthesis of split stream circuits
shown here would have been highly unlikely by empirical arguments or
an heuristic approach only. In view of the large number of parameters
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involved, it may not be possible to guarantee the global optimum. But on
the other hand, realization of a large number of local optima can be
exploited to choose a circuit which is both reasonably efficient process-
wise and simple in design, as shown in the four cell example.
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SYMBOLS

parameters in empirical expression relating mean residence
time to particle size

mass flow rate of particles K in concentrate stream

mass flow rate of jth species in concentrate stream from kth cell
density of particulate solids

pulp density

limiting value of pulp density

total feed flow rate of jth species to ith cell

grade of concentrate

limiting value of grade

grade of feed ore

hold up of solids in ith cell

flotation rate constant

flotation rate constant of jth species

flotation rate constant of gangue

flotation rate constant of middlings

flotation rate constant of valuable

number of cells in circuit

mass flow rate of particles K in new feed

number of particulate species in feed

price of feed ore

increase in price of concentrate for every 19 improvement in
grade

particle size

mass flow rate of particles K in tailings stream

mass flow rate of jth species in tailings stream from kth cell
total volume of cells in circuit :
volume of jth cell

fractional valuable mineral content in jth species

number of cells in a battery of flotation cells

defined by Eq. (4)

fraction of concentrate flow from ith cell leaving the circuit
fraction of concentrate flow from k to ith cell
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dio fraction of tailings flow from ith cell leaving the circuit
S fraction of tailings flow k to ith cell
Ori fraction of new feed to ith cell
A mean residence time of solid particles in the cell
p) limiting value of mean residence time of solid particles in the
cell
2 mean residence time of solid particles in ith cell
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